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A CI method for calculating inner and valence shell vertical ionization potentials 
is presented. It is based on ab initio SCF MO calculations for the neutral closed- 
shell ground state followed by CI perturbation calculations for the ground and 
ion states including all spin and symmetry adapted singly and doubly excited 
configurations with respect to the main configurations of the state of interest. 
The state energy is computed by performing a CI calculation for a set of selected 
configurations, and then adding the contributions of the remaining configura- 
tions as estimated by second order Brillouin-Wigner perturbation theory. The 
use of the same set of MO's for all states together with the CI perturbation 
method makes the method rather rapid. The numerical results are, in spite of 
the limited Gaussian basis sets used, in good agreement with experiment. 

Key words: Configuration functions for CI, selection of --~ - Brillouin-Wigner 
perturbation theory - Calculation of vertical ionization potentials, ab initio 

1. Introduction 

Improvement over Koopmans' theorem Eli predictions of vertical ionization 
potentials (VIP's) requires a simultaneous calculation of the reorganization and 
correlation energies for neutral molecules and ions [2, 3]. This problem can be 
tackled both by configuration interaction (CI) methods and various variants of 
many-body perturbation theory E4-10]. 

Most of the CI variants described E11-14] so far are based on orbitals obtained 
for the ion state of interest (ordinarily from restricted open-shell SCF calculations) 
and include singly or higher excited configurations. Other workers [3, 15-18] make 
use of closed-shell SCF orbitals and build up ion doublet configurations (amongst 
them the Koopmans' configurations [ 19]) from this orbital basis set. These sorts of 
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calculations have been restricted with respect to the types of configurations used 
(single excitation CI [16]) or their number taken account of [15]. Some authors 
use the Rayleigh-Schr6dinger (RS) perturbation theory with the configurations 
as zeroth order wavefunctions up to the second [17] or third order [3] to obtain 
approximate VIP's. In our preceding CI work we considered single and limited sets 
of double excitations for the ground and cation states [18]. 

In the present paper we present a more general CI method based on molecular 
SCF orbitals (MO's) and usage of all spin and symmetry adapted singly and doubly 
excited configurations with respect to the state of interest (see below). To make the 
problem tractable or to save computer time the most important configurations are 
selected for an explicit CI treatment whilst the effects of the remaining configura- 
tions are estimated from a second order Brillouin-Wigner (BW) perturbation 
calculation [20]. 

2. Method 

At first a brief outline of the method used to compute the energy E~ of a state I~b) 
is given. The method is valid for states of arbitrary charge and multiplicity. 

Starting from a finite orthonormalized basis set of MO's {10)} the finite ortho- 
normalized basis set {IK)} of all possible configurations is generated. The use of 
spin and symmetry adapted configurations allows factoring the CI matrix and 
avoids complications [21] in handling configurations involving spin permutations 
among the same orbitals. In spite of spin and symmetry blocking, the CI problem 
thus defined is generally intractable because of its size and therefore needs simpli- 
fication. As a first step in this direction a set of main configurations (MC's) [22] 
{IM)} is specified. It includes the most important configurations. 

All configurations differing from the MC's by higher than double excitations are 
neglected. They are referred to as the set of neglected configurations (NC's) 
{IN)}. From all other configurations a set of selected configurations (SC's), 
{IS)} is singled out according to their strength of interaction with the MC's. The 
set of remaining configurations (RC's) {IR)} is supposed to influence E,  only due 
to their huge number. Thus the configurational space is divided into the four sub- 
spaces IN, S, ~ ,  and N spanned by the subsets {IM)}, {IS)}, {IR)}, and {IN)}. 

The search for the SC's is accomplished by the following selection procedure 
First the MC's CI matrix HM with elements (MIHIM') (H being the non-rela- 
tivistic Hamiltonian of the system under study) is constructed and diagonalized. 
The resulting set of eigenvectors {IM~)} with 

IMv)= ~2 C~M~IM) (1) 
M 

is thereafter referred to as the set of selection vectors (SV's). A configuration IK) 
neither belonging to 1N nor N is selected: 1) if its contribution I AEM, I to the second- 
order RS perturbation energy from its interaction with one of the SV's is larger 
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than or equal to a theshold value T, i.e. 

IAEM~ [= [(My IHIK>I2/IEMv-- E~r >>- T (2) 

or 2) if it is lower in energy than one of the SV's by less than a specified amount G, 
i.e. 

0 < (EMv -- E K) < G (3) 

Degenerate configurations are incorporated into $ if at least one of them meets (2) 
and (3). Note that (2) assures selection of the configurations mostly contributing 
to the state function I~b> and (3) avoids difficulties with the subsequent perturba- 
tion procedure. 

CI selection procedures have been known for a long time [23, 24] and have been 
widely used [21, 22, 25]. Most of them are based on second-order RS perturbation 
theory [21, 23-25] and in one case [22] small test matrices are diagonalized Some 
others [21, 25] are iterative PrOcedures. For the present work the selection pro- 
cedure chosen is not considered a critical point because of subsequent perturbative 
corrections. 

After the subset {IS >} being determined there is no longer any need to differentiate 
between the {[M>} and {IS>} sets and henceforth {[M>} is considered a part of 
{IS>}. Then the matrix Hs with elements (S[HIS'> is set up. Its diagonalization 
yields the zeroth order approximations 

Iq~(~ = ~ Cso(~ (4) 
S 

and E~ ~ for r~b) and E0, respectively. 

To define the perturbation operator H '  we cannot start from the exact (as defined 
above) Hamiltonian H as 

H =  F+  V (8) 

where F is the Hartree-Fock (HF) operator and V is known as the "fluctuation 
potential" [26] bul: instead must resort to the approximate Hamiltonian 
written as 

~r= F +  ~" (9) 

with 

P= v -  Z Z o,, ,voN, (lO) 
N N'  

where O~ is the configurational projection operator 

OK = IK> <KI (11) 

and the sums in (10) extend over all configurations in N. Thu s using (10) instead of 
V is equivalent of neglecting all configurations in N. Since, however ~" is still too 
large to be considered as perturbation we define the unperturbed Hamiltonian H o 
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and the perturbation operator H '  through 

H = H o + H '  

with 

H0=F+ V0 

H ' = ~ -  Vo 
and 

v0= F,Z osvos,+ 
S S '  R R '  

(12) 

(13) 

(14) 

(15) 

where the first double sum in (15) extends over all configurations in S and the 
second one over those in IR. Thus the first term accounts for the configurations in S 
space and the second term for the diagonal and degenerate ones in IR space. 

Partitioning of H according to (12) to (15) means that the functions kb (~ and 
energies E~ (~ are eigenfunctions and eigenvalues of Ho in 5; space. In IR space non- 
degenerate RC's are eigenfunctions of Ho with eigenvalues ER = (R]HIR) and 
some degenerate subset {[Rd )} has eigenfunctions 

IRo>= ~ CRdR. IRa> (16) 
Ra 

with eigenvalues ERr= (R, LHIR~> obtained by diagonalizing the submatrix HRd. 
To simplify the notation we henceforth use {IR(~ for all eigenfunctions o f H  0 in 
IR space. Accordingly H '  has no diagonal elements (i.e. no first order corrections) 
and only vanishing matrix elements in S space but couples all configurations of 
space with those of IR space and the configurations of IR space with themselves. 

The effects of the IR-space configurations on the wavefunctions 14) (0) > are approxi- 
mately taken account of by second-order BW perturbation theory according to 
the formula. 

E ( 2 ) _  ~,(o)~ _ ~  . ~ 1( 4~(O)IH'IR(O)>I2/(E;2)- E(R~ (171 
R(O) 

(17) must be solved iteratively. Only a few iterations are sufficient to calculate 
E (2) to an accuracy of 10-s a.u. The final BW corrected state function then is 

i~.)>=N(l~(o)>+ y~ CR(o,o(~,[R(~ (18) 
R(O) 

with 

CR(O)4,(~)= ( dp(~176 E(R ~ (19) 

and 

N=(1 + 2 IC~,o,~,~,12) -l/z- (20) 
R(O) 
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Application of  RS, perturbation theory yields less satisfactory results. It over- 
estimates the energy gain for the lower roots as a consequence of  its non-iterative 
nature [20]. 

Note that the BW calculation is equivalent to the diagonalization of  a matrix 
which just contains all matrix elements involved in the perturbation formula (17). 

CI perturbation methods with CI vectors as zeroth order approximations have 
been previously used [25, 27]. The methods differ however, in treating the degener- 
ate RC's and additionally either in using inferior [20] RS instead of  BW theory [25] 
or in disregarding configurational selection procedures 1-27]. 

3. Application of ~ke Method to the Calculation of Vertical Ionization Potentials 

The vertical ionization potentials (VIP's) are calculated as the difference in energy 
between the various ion states and the molecular ground state. The state energies 
are obtained by applying the CI method of  the previous section. All types of single 
and double excitations are considered. Besides the Koopmans '  configuration A we 
have two sorts of  single excitations B and C and four types of  double excitations 
D, E, F, and G. Occupations corresponding to C, E, F (three unpaired electrons, 
three determinants) lead to two different doublet configurations [28]. For  G (five 
unpaired electrons, ten determinants), we have five doublet configurations with 
coefficients obtained by the Clebsch-Gordan formalism [29]. All matrix elements 
have been obtained with a computer program that is based on the explicit expres- 
sions for the different matrix elements. This program has been widely checked 
against a general brute force matrix element program. All molecular orbitals 
(MO's) generated in the closed shell SCF procedure have been considered. 

The selection parameters (cf. the previous section) have been chosen as follows. 
The gap parameter G was set equal to 0.5 a.u. (i.e. 13.605 eV) and kept fixed for all 
calculations performed. The threshold parameter T varied between 0.01 and 
0.02 eV. Accordingly, the space S was spanned by 90 to 150 symmetry-adapted 
SC's in the actual calculations. The total number of configurations was up to 
several thousands. The same T value was used for all states of  a given molecule. 
The various total energies reached for the molecules studied in this paper are sum- 
marized in Table 1. Here Escv, Eel and EpERTCI are the SCF, the S-space CI and 
the CI plus BW perturbational results. It is very important that EpE~TCl and 
particularly the VIP's based on the molecular PERTCI  calculations are rather 

Table I. Total energies without and with CI 

Molecule T (eV) /~cF (a.u.) ECI (a.u.) EpE~TCi (a.u.) 

H20 0.01 --75.907390 -76.030229 - 76.037937 
N 2 0.015 - 108.815623 - 109.006778 - 109.042925 
CzH 2 0.02 --76.720501 - 76.869881 - 76.932564 
CHzO 0.02 -113.681759 -113.816763 -113.894016 
CO 0.02 - 112.552355 - 112.716555 - 112.751251 
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stable with changes in T meaning that the particular value of T chosen is not a 
critical point. These findings are demonstrated for N: in Figs. 1 and 2, respectively. 

THRESHSLD T [EV) 
zo-' ,~ ,~ ~, ? 6 7, ~ ? ,to-' 2, 3 

,,~'" ~ N2 ~BOUND STRT[ ICIJ ~ �9 : : : : : : 
�9 N2 GR~UNI) STATE [PERTOI) 

> _ 

~ i - ~  ~ ~ ' ~  o: 
u.i  

N 
t o  

Fig. 1. CI and PERTCI descents in total ground state energy 0 f N :  (i.e. : CI and PERTCI minus SCF 
ground state energies) vs. thresholds T 
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/ 
f 
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Fig. 2. CI and PERTCI first VIP o f  N 2 vs, thresholds T 

For most calculations one MC proved to be sufficient, namely the closed shell 
ground state configuration on one hand and the Koopmans' configurations for the 
ion states on the other. Exceptions to this rule pertain to the second 2B 2 s t a t e  of 
C H 2 0  where two MC's have been used with the selection criterions (Eqs. (2) and 
(3)) being applied to one of the resulting SV's (henceforth abbreviated as 2M1S), 
the third 2A 1 state of the same molecule and third 2Z+ of CO where selections of 
3M3S and 3M1S types respectively have been applied. For a more detailed dis- 
cussion of these cases see the next section. 

All calculations of the present paper have been done using 4-31 G basis sets [33] 
and experimental geometries [-30-32]. For N2 and C2H2 one s and two p~ type 
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bond polarization (BP) functions have been placed midway between the heavy 
atoms. The exponents of the NN BP functions have been optimized (es = 1.7, 
ep=0.8). The corresponding CC exponents are taken from literature [34]. The 
SCF calculations were performed with the POLYATOM program system [35]. 

The computational efforts of the method are rather moderate. The CPU time used 
to compute one VIP is of the same order as for one SCF calculation when all 
occupied and virtual MO's are included. The most time consuming step is the 
transformation of repulsion integrals from the AO to the MO basis. It has to be 
done however only once for all states of a molecule. 

4. Results and Discussion 

Our calculated VIP's ( - e - K o o p m a n s '  IP's, IPci's = S-space CI, IPeERrcI'S = CI 
plus BW perturbational treatment) are gathered for H20,  N2, C2 H2, CH20 and 
CO in Tables 2-6, respectively along with the experimental values and various sets 
of otherwise obtained theoretical data. In view of the 4-31 (3 basis set used the 
results are surprisingly good. The PERTCI results are generally only slightly 
better than the CI ones indicating that the Koopmans' defects are predominantly 
accounted for by the SC's and that the contributions of the RC's to the state 
energies, though not small, generally cancel when the difference of the state 
energies are taken. However exceptions do occur so that PERTCI calculations 
must be always carried out (cf. e.g. the lbl ionization of CH20 ). 

Our VIP's tend to be a bit too low for the lower ionization and bit too high for the 
higher ionizations. We presume that these minor defects are due to the rather 
limited basis set used. It is well known in literature [9, 40] that CI and perturba- 
tional results are rather basis set dependent So it is to be expected that Koopmans' 
defects cannot be assumed to be basis set independent. A rather drastic example 
for that is already contained in literature [38, 41, 47] for N 2 and CH20 (cf. the 
IPMB_~v'S of Tables 3 and 5 of the present paper). 

In some cases difficulties may arise in assigning VIP's to MO's. In most cases the 
Koopmans' configuration contributes 80~ and more to the computed wavefunc- 
tion and the assigr~ment is unambiguous. Sometimes, however, there is strong 
mixing of the Koopmans' configuration with other configurations (usually higher 
excited "shake up'" configurations and sometimes even another Koopmans' 
configuration), and the contribution of the Koopmans' configuration may become 
less than 50%. In such cases the same Koopmans' configuration is contained with 
large coefficients in more than one wavefunction. In these cases we have assigned 
the states with respect to the configurations with the largest expansion coefficient 
and marked this by an asterisk (*) in the tables. 

In such strong mixing cases pure perturbational expansions may fail to converge 
[40]. Examples are the 3al ionization of CH20 (of. the RSPT results of Table 5) 
and the 3o -+ ionization of CO (cf. the RSPT results of Table 6). Here CI treatments 
are unavoidable. FivLally it should be noted that our calculations predict several 
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Table 4. Vertical IP's 0 fC2H 2 

55 

MO - e (eV) IP o (eV) IPPERTCl (eV) IPExv a (eV) IPM~GV b (eV) 

la  o 305 .21  295.29 295.89 291.14 - -  
la  w 3 0 5 . 1 1  295.26 295.62 
2a o 27.60 25.04 25.02 23.33 26.05 
2% 20.55 19.57 19.26 18.75 18.89 
3a 0 18 17 17.45 17.11 16.72 16.98 
ln,  10.75 11.32 10.90 11.40 11.06 

"Refs. [37, 44]. 
b Ref. [38], contracted Gaussian basis: C (9s5p/4s2p), H (4s/2s). 

Table 5. Vertical IP's of CH20 

I c IPPERTCl IPuB GF b PMB-GF IPRsPT d 
MO - e (eV) IPc! (eV) (eV) IPExP a (eV) (eV) (eV) (eV) 

lal  559.19 542.44 542.74 539.4 - -  - -  540.23 
2a i 307.69 297.30 297.21 294.5 - -  - -  293.38 
3a 1 38.64 37.37* 36.81" . . . .  
4a 1 24.80 23.36 22.50 21.8 - -  - -  21.87 
lb 2 19.63 18.42" 17.86" 16.78 17.86 17.13 17.59 
5a 1 17.57 16.06 16.02 16.00 16.26 16.36 16 19 
lbl(n ) 14.36 14.72 14.37 14.38 14.35 14.29 14.73 
2b 2 12.16 10.99 10.62 10.88 10.92 10.84 11.15 

a Refs. [37, 45, 46]. 
bRef. [38]; contracted Gaussian lobe basis: C, O (l ls6p/5s3p); H (5s/ls). 
c Ref. [47] ; contracted Gaussian basis: C, O ( 11 s 7p 1 d/7s 5p 1 d), H (6s lp/4s lp). 
d Ref. [40] ; double zeta STO basis. 

Table 6. Vertical IP's of CO 

MO - ~ (eV) IPci (eV) IPvERT o (eV) IPExP" (eV) IPRsPr b (eV) IPMB_~F c (eV) 

la  + 561.76 545.94 545.82 542.1 545.01 
2a + 309.33 300.19 299.79 295.9 296.97 
3~ + 42.37 40.84* 38.51" 38.3 - -  
4a + 21.61 19.95 19.56 19.72 20.51 
In 17.41 17.28 16.87 16.91 18.02 
5a + 14.93 13.64 13.19 14.01 14.08 

540.73 
298.68 

a Refs. [48, 37]. 

b Ref. [40] ; single zeta STO basis for ls, double zeta STO basis for 2s, 2p. 
Ref. [49] ; contracted Gaussian basis. 
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shake-up transitions in the region of 20-40 eV which are not shown in the tables 
and which have not yet been identified in the spectra Even the 3a I ionization of 
CH20 that may be described as Koopmans' transition with a very large shake-up 
admixture has not been experimentally characterized. 
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